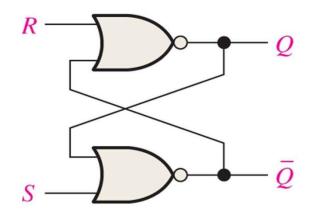
Digital Circuits ECS 371

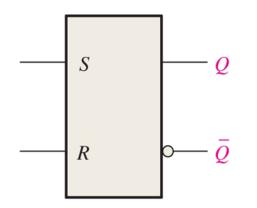
Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 16

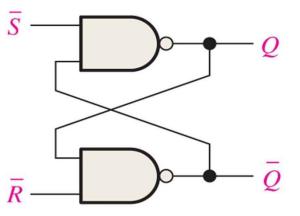
ECS371.PRAPUN.COM

Office Hours: BKD 3601-7 Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30

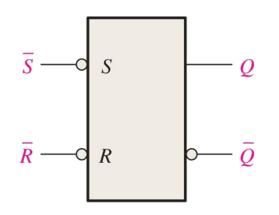

Announcement

- Reading Assignment:
 - Chapter 7: 7-1, 7-2, 7-4
- When the grading is done (Monday?), your midterm scores will be posted on the course web site.


 \mathbf{X}

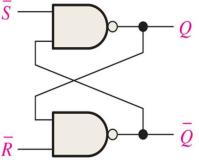

S-R Latch

• There are two versions of SET-RESET (S-R) latches.



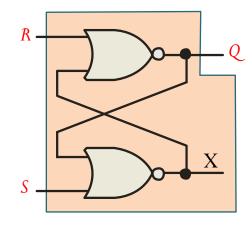
(a) Active-HIGH input S-R latch




(b) Active-LOW input $\overline{S}-\overline{R}$ latch

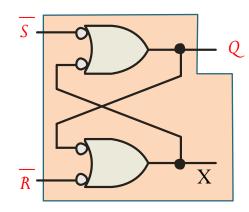
S-R Latch (Remember This!)

- Two inputs
 - S for set
 - **R** for **reset**
- Two useful states (for normal operation)
 - When output Q = 1 and $\overline{Q} = 0$, the latch is said to be in the set state.
 - When output Q = 0 and $\overline{Q} = 1$, the latch is said to be in the reset state.



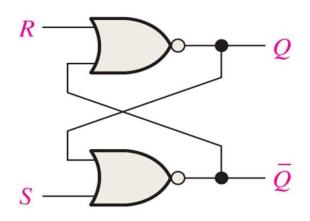
(a) Active-HIGH input S-R latch

(b) Active-LOW input $\overline{S}-\overline{R}$ latch


The "Old Q"-"New Q" Analysis

$$Q_{new} = \overline{R + X}$$
$$= \overline{R + \overline{Q_{old} + S}}$$
$$= \overline{R} \cdot (Q_{old} + S)$$

	Inp	out	Output
	S R		Q _{new}
	0 0 0 1		Q _{old}
			0
	1 0 1 1		1
			0

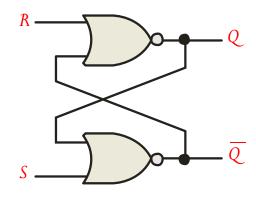

The "Old Q"-"New Q" Analysis (2)

$$Q_{new} = \overline{\overline{S}} + \overline{X}$$
$$= \overline{\overline{S}} + \overline{\left(\overline{Q_{old}} + \overline{\overline{R}}\right)}$$
$$= \overline{\overline{S}} + Q_{old} \cdot \overline{R}$$

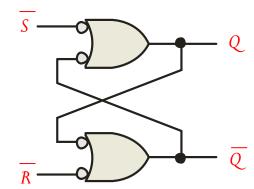
Inp	out	Output
S	R	Q _{new}
0	0	1
0	1	1
1	0	0
1	1	Q _{old}

"Old Q"/"New Q" Analysis

 \overline{S}

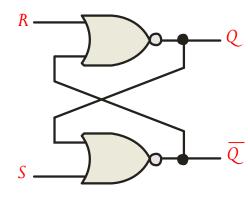

(a) Active-HIGH input S-R latch

Inp	out	Output	
S	R	Q _{new}	
0	0	Q _{old}	
0	1		
1	0	1	
1	1	0	

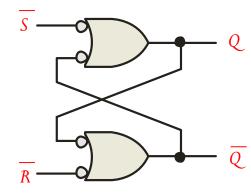

(b) Active-LOW input $\overline{S}-\overline{R}$ latch

Inp	but	Output	
S	R	Q _{new}	
0	0	1	
0	1	1	
1	0	0	
1	1	Q old	

Expanded Version



Inp	outs	Outputs		Mode	Comment		
S	R	Q	$\overline{m{Q}}$	of Operation	Comment		
0	0	NC	NC	Hold	No change.		
0	1	0	1	Reset	For RESETting Q to 0		
1	0	1	0	Set	For SETting Q to 1		
1	1	0	0	Prohibited	Invalid Condition		



Inp	Inputs		puts	Mode	Comment		
\overline{S}	\overline{R}	Q	$\overline{oldsymbol{Q}}$	of Operation	Comment		
0	0	1	1	Prohibited	Invalid Condition		
0	1	1	0	Set	For SETting Q to 1		
1	0	0	1	Reset	For RESETting Q to 0		
1	1	NC	NC	Hold	No change.		

Short Version (Remember This!)

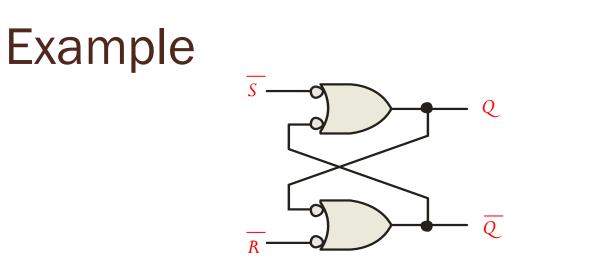
Inp	out	Mada		
S	R	Mode		
0 0		HOLD		
0 1		RESET		
1	0	SET		

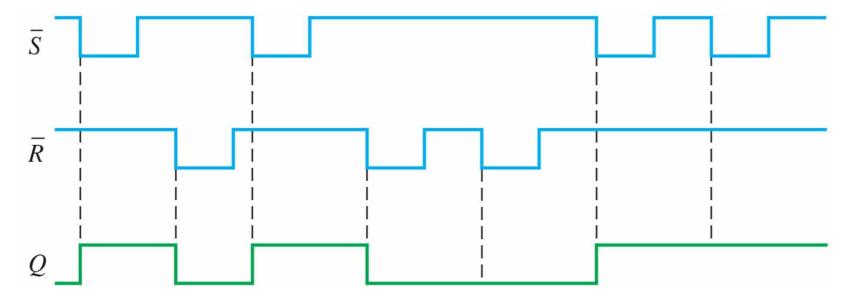
Inp	outs	Mada	
\overline{S}	\overline{R}	Mode	
0	1	SET	
1	0	RESET	
1	1	HOLD	

Operating S-R latch

In	out	Mada		
S	R	Mode		
0	0	HOLD		
0	1	RESET		
1	0	SET		

- Under normal conditions, both inputs of the latch remain at 0 unless the state is to be change.
- The application of a 1 to the **S input** causes the latch to go to the **set state**.
 - The S input must go back to 0 before R is changed to 1 to avoid occurrence of the undefined state.
 - Applying a 0 to S with R = 0 leaves the circuit in the same state.
- The application of a 1 to the **R input** causes the latch to go to the **reset state**.
 - We can then remove the one from R, and the circuit remains in the reset state.


(1,1) Problem for S-R Latch


- If a 1 is applied to both the inputs of the latch, both outputs go to 0.
- This produces an undefined state.
- It results in an indeterminate or unpredictable next state when both inputs return to 0 simultaneously.
- In normal operation, these problems are avoided by making sure that 1's are not applied to both inputs simultaneously.

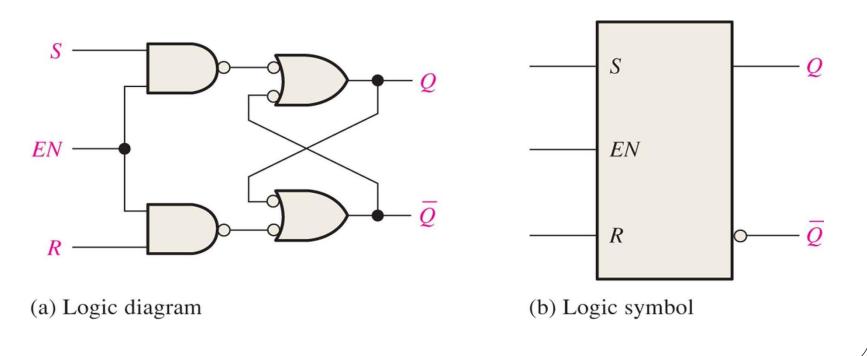
Operating S-R latch

Inp	outs	Mada		
\overline{S} \overline{R}		Mode		
0 1		SET		
1	0	RESET		
1	1	HOLD		

- Under normal conditions, both inputs of the latch remain at 1 unless the state is to be change.
- The application of a 0 to the **S input** causes the latch to go to the **set state**.
 - The S input must go back to 1 before R is changed to 0 to avoid occurrence of the undefined state.
 - Applying a 1 to \overline{S} with $\overline{R} = 1$ leaves the circuit in the same state.
- The application of a 0 to the **R** input causes the latch to go to the **reset state**.
 - We can then remove the 0 from R, and the circuit remains in the reset state.

				Inp	ut s	Mode
Example				\overline{S}	\overline{R}	woue
слаттріс	<u>s</u>			0	1	SET
)		1	0	RESET
				1	1	HOLD
	\rightarrow					
	La		_			
-	\overline{R} $$		-			
				-		
<u>s</u>						
					i	
					i i	
R						

 \overline{S}

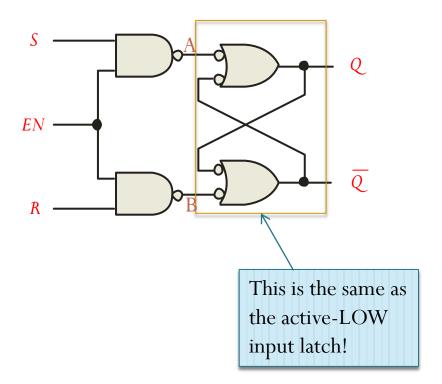

 \overline{R}

Q

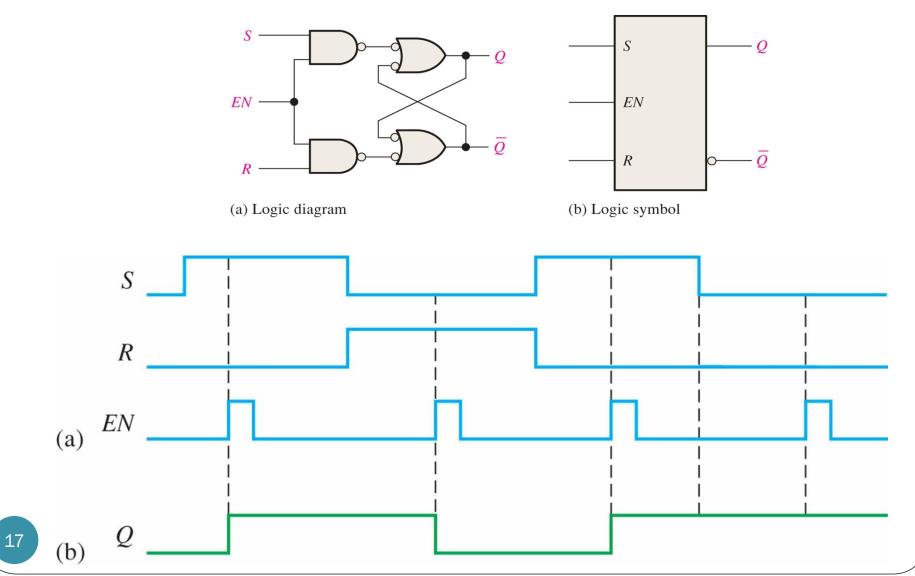
X

Gated Latch

- A gated latch is a variation on the basic latch.
- The gated latch has an additional input, called enable *(EN)* that must be HIGH in order for the latch to respond to the *S* and *R* inputs.

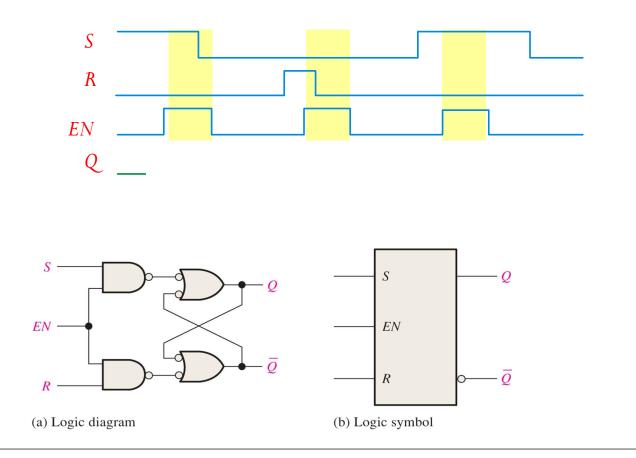


Gated Latch

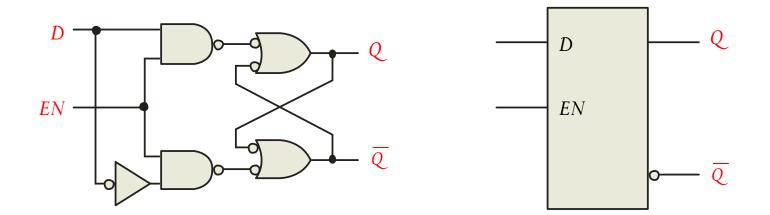

Observe that:

$$A = \overline{S \cdot EN} = \overline{S} + \overline{EN}$$
$$B = \overline{R \cdot EN} = \overline{R} + \overline{EN}$$

EN	А	В
0 ⇔	1	1
1 ⇒	\overline{S}	\overline{R}


Example: Gated S-R Latch

Exercise: Gated S-R Latch


Show the Q output with relation to the input signals. Assume Q starts LOW.

 \mathbf{X}

Gated D latch

- The D latch is a variation of the S-R latch.
- Has only one input in addition to EN.
 - This input is called the D (data) input.
- Combine the S and R inputs into a single D input.

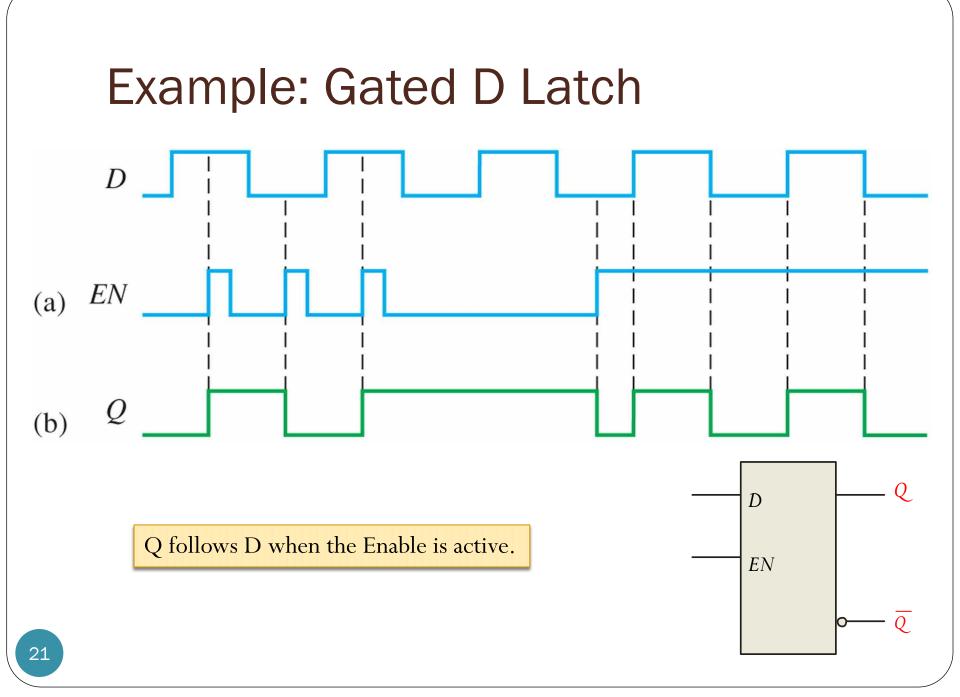
Gated D Latch: Operation

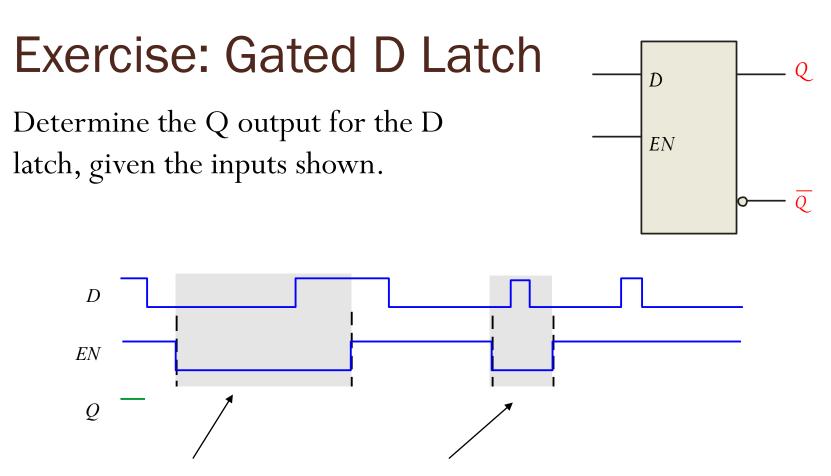
- A simple rule for the D latch is:
 - Q follows D when the Enable is active/asserted.
 - In this situation, the latch is said to be "open" and the path from D input to Q output is "transparent".
 - The circuit is often called a transparent latch for this reason.
- When EN is LOW, the state of the latch is not affected by the D input.
 - In this situation, the latch is said to be "close"
 - The Q output retains its last value and no longer changes in response to D, as long as EN remains negated.
- Output is "latched" at the last value when the enable signal becomes not asserted.
- Truth Table: –

 Q_0 is the prior output level before the indicated input conditions were established.

Inputs		Outputs		
D	EN	Q	Q	Comments
0	1	0	1	RESET
1	1	1	0	SET
Х	0	Q ₀	\overline{Q}_0	No change

D


EN


Q

Q

20

 \mathbf{X}

Notice that the Enable is not active during these times, so the output is latched.

Latch: some final words....

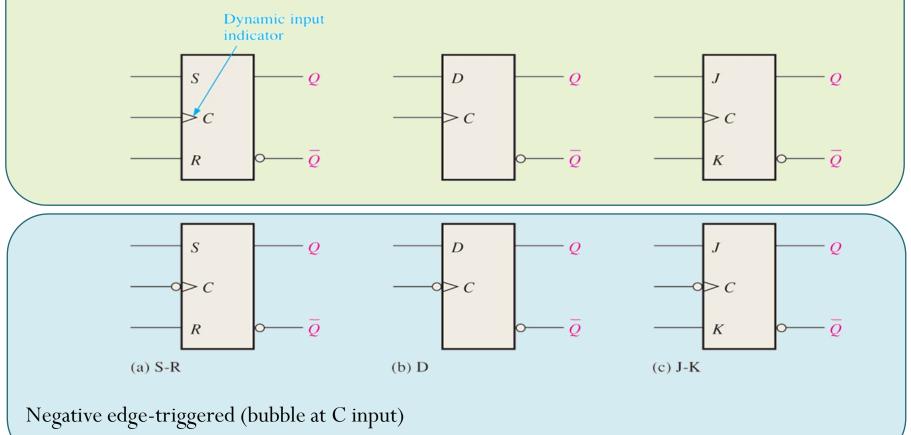
• Latch = A *bistable* digital circuit used for storing a bit.

 \mathbf{X}

- **RESET**
 - 1. The state of a latch when the output (Q) is 0.
 - 2. The action of producing a RESET state.

• SET

- 1. The state of a latch when the output (Q) is 1.
- 2. The action of producing a SET state.

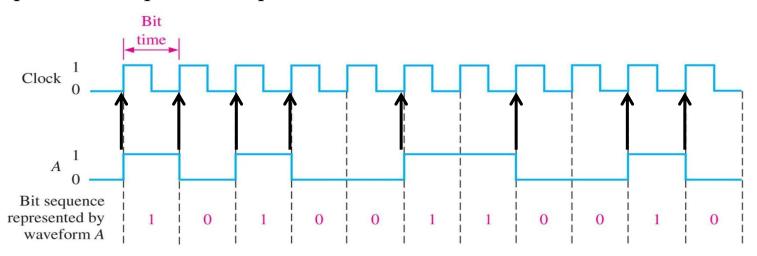

Flip-Flop

- Latches sample their inputs (and change states) any time the EN bit is asserted
- Many times we want more control over when to sample the input
- A **flip-flop** differs from a latch in the manner it changes states.
- A flip-flop is a *clocked* device.
- Flip-flops are **synchronous**: the output changes state only at a specified point on the triggering input called the **clock (CLK)**
 - In other words, changes in the output occur in synchronization with the clock.
- An edge-triggered flip-flop changes state either at the positive edge (rising edge) or at the negative edge (falling edge) of the clock pulse.

Edge-Triggered Flip-Flops

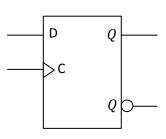
"Edge-triggered flipflop" is redundant (all flip-flops are edgetriggered

Positive edge-triggered (no bubble at C input)



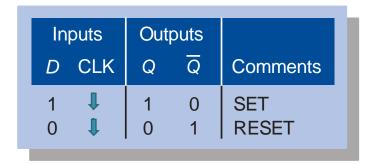
Clock (CLK)

• In digital synchronous systems, all waveforms are synchronized with a clock.


 \mathbf{X}

- The clock waveform itself does not carry information.
- The clock is a periodic waveform in which each interval between pulses (the period) equals the time for one bit.

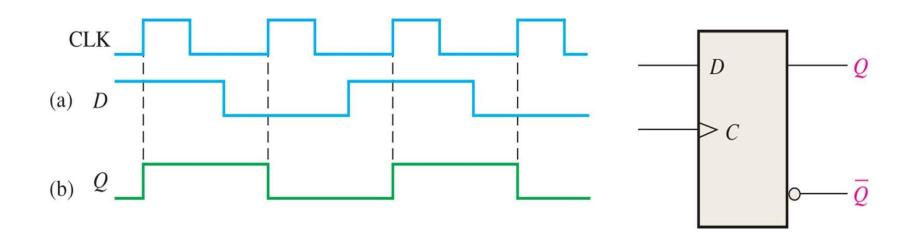
• Notice that change in level of waveform *A* occurs at the **leading edge** of the clock waveform.


D Flip-Flop

- The truth table for a positive-edge triggered D flip-flop shows an up arrow to remind you that it is sensitive to its D input only on the **rising edge of the clock**.
- The truth table for a negative-edge triggered D flip-flop is identical except for the direction of the arrow.

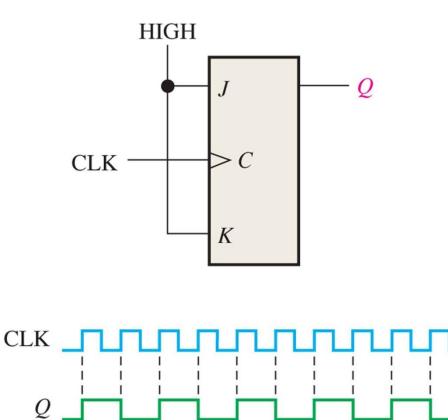
Inputs		Outputs		
D	CLK	Q	Q	Comments
1	1	1	0	SET
0	1	0	1	RESET

(a) Positive-edge triggered

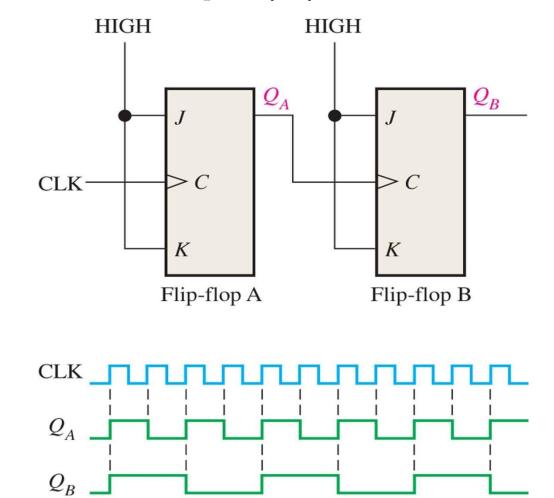


(b) Negative-edge triggered

 \uparrow = clock transition LOW to HIGH


Ex: Positive-edge triggered D Flip-Flop

• Determine the Q output waveform if the flip-flop starts out RESET


Some Applications

• Divide the clock frequency by 2

Some Applications

• Divide the clock frequency by 4

